R/survey_statistics.r
survey_old_quantile.Rd
Calculate quantiles from complex survey data. A wrapper
around oldsvyquantile
, which is a version of the function
from before version 4.1 of the survey package, available for backwards compatibility.
survey_old_quantile
and survey_old_median
should always be
called from summarise
. See Thomas Lumley's blogpost
<https://notstatschat.rbind.io/2021/07/20/what-s-new-in-the-survey-package/>
for more details.
survey_old_quantile(
x,
quantiles,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
q_method = "linear",
f = 1,
interval_type = c("Wald", "score", "betaWald", "probability", "quantile"),
ties = c("discrete", "rounded"),
df = NULL,
...
)
survey_old_median(
x,
na.rm = FALSE,
vartype = c("se", "ci"),
level = 0.95,
q_method = "linear",
f = 1,
interval_type = c("Wald", "score", "betaWald", "probability", "quantile"),
ties = c("discrete", "rounded"),
df = NULL,
...
)
A variable or expression
A vector of quantiles to calculate
A logical value to indicate whether missing values should be dropped
NULL to report no variability (default), otherwise one or more of: standard error ("se") confidence interval ("ci") (variance and coefficient of variation not available).
A single number indicating the confidence level (only one level allowed)
See "method" in approxfun
See approxfun
See oldsvyquantile
See oldsvyquantile
A number indicating the degrees of freedom for t-distribution. The
default, Inf uses the normal distribution (matches the survey package).
Also, has no effect for type = "betaWald"
.
Ignored
library(survey)
data(api)
dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)
dstrata %>%
summarise(api99 = survey_old_quantile(api99, c(0.25, 0.5, 0.75)),
api00 = survey_old_median(api00, vartype = c("ci")))
#> # A tibble: 1 × 9
#> api99_q25 api99_q50 api99_q75 api99_q25_se api99_q50_se api99_q75_se api00
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 525. 631 727. 12.5 18.4 17.9 667.
#> # ℹ 2 more variables: api00_low <dbl>, api00_upp <dbl>
dstrata %>%
group_by(awards) %>%
summarise(api00 = survey_old_median(api00))
#> # A tibble: 2 × 3
#> awards api00 api00_se
#> <fct> <dbl> <dbl>
#> 1 No 641. 23.4
#> 2 Yes 671. 18.8